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Abstract

Many subfields of machine learning share a common stumbling block: evaluation.
Advances in machine learning often evaporate under closer scrutiny or turn out to
be less widely applicable than originally hoped. We conduct a meta-review of 107
survey papers from computer vision, natural language processing, recommender
systems, reinforcement learning, graph processing, metric learning, and more,
organizing a wide range of surprisingly consistent critique into a concrete taxonomy
of observed failure modes. Inspired by measurement and evaluation theory, we
divide failure modes into two categories: internal and external validity. Internal
validity pertains to evaluation on a learning problem in isolation, such as improper
comparisons to baselines or overfitting from test set re-use. External validity
relies on relationships between different learning problems, for instance, whether
progress on a learning problem translates to progress on seemingly related tasks.

1 Introduction

Most empirical papers in machine learning follow the benchmarking paradigm for evaluation. There
is a myriad of datasets and tasks in the literature, and what it means for a machine to “learn” has in-
terpretations from mirroring human-like intelligence to solving a specific practical task. Nevertheless,
whether a new method has merit is usually determined by evaluating a trained model on a held-out
test set and comparing its performance to prior work. If the new model improves over the relevant
baselines, the method represents an algorithmic contribution. Since the benchmark itself is often only
a challenge problem specifically constructed for research, the underlying assumption is that the new
method will also yield performance improvements on real-world problems similar to the benchmark.

Benchmarking was popularized in machine learning in the 1980s through the UCI dataset repository
and challenges sponsored by DARPA and NIST [24, 35, 55, 81]. Since then, benchmark evaluations
have become the core of most empirical machine learning papers. The impact of benchmarking is
illustrated by the ImageNet competition [31, 131], which seeded much of the excitement in machine
learning since 2010. Winning entries such as AlexNet [77] and ResNets [57] have become some of
the most widely cited papers across all sciences.

Evaluating algorithmic progress with benchmarks is a double-edged sword. On the one hand,
benchmarks come with a clearly defined performance metric that enables objective assessments of
different algorithms. On the other hand, summarizing a new algorithm with a single performance
number creates an illusion of simplicity that ignores the many underlying assumptions in the learning
problem posed as a benchmark. Indeed, an increasing number of machine learning papers take a
critical perspective on recent algorithmic advancements and find important flaws in current evaluation
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Figure 1: Our framework for benchmark-based evaluations of machine learning algorithms and
associated validity concerns. In the benchmark paradigm, papers which propose a new algorithmic
idea demonstrate its effectiveness by comparing to results of prior work on a specific learning problem
(the benchmark). The underlying assumption is that the benchmark is representative for a broader
task and hence the performance improvements will transfer to real-world applications. This chain of
reasoning relies on multiple steps with various potential validity issues.

practices. For instance, most claimed advances from the past few years of recommender systems
research failed to improve over established baselines and evaporate under closer scrutiny [25, 125].
Given the key role benchmarking plays in machine learning, such evaluation flaws threaten to
undermine the perceived algorithmic gains in recent years.

In this paper, we provide a systematic taxonomy of failures in the benchmarking paradigm in order
to put current evaluation practices on solid foundations. Our taxonomy draws from 107 analysis
papers which study specific machine learning evaluations; we describe further how we arrived at
this taxonomy in Appendix 6. Despite the diversity of tasks and algorithms, we find that the same
evaluation failures repeat across diverse areas such as computer vision, natural language processing,
recommender systems, reinforcement learning, graph processing, metric learning, and more. Based
on lessons from evaluation theory [92], we divide the failure modes into two categories:

• Internal validity refers to issues that arise within the context of a single benchmark.
• External validity asks whether progress on a benchmark transfers to other problems.

Figure 1 illustrates our taxonomy of evaluation failures in machine learning. Our taxonomy can serve
as a resource for machine learning researchers and practitioners to check for evaluation issues in their
own disciplines. Since many failure modes occur in several fields, insights from one field will transfer
to others. Additionally, our paper contributes insights to the ongoing discussion around evaluation
practices in machine learning. Finally, our taxonomy of external validity criteria offers a starting
point for research in this area. The relationships between different datasets and learning problems are
not yet well understood; more work is needed to understand the scope of current benchmarks.

Next we introduce our framework for evaluation validity in machine learning, which organizes the
common failures modes described in Sections 3 and 4. Section 5 then discusses limitations of the
benchmarking paradigm itself before we conclude in Section 6. An overview of the papers that
inform this survey can be found in Appendices D and E.

2 A conceptual framework for machine learning evaluations
Empirical machine learning evaluations are ultimately tied to datasets. A key question is to what
extent the datasets used to measure algorithm performance (e.g., ImageNet [31, 131] or GLUE
[158]) represent the problem a paper claims to address (e.g., image classification or natural language
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Figure 2: An example of a task hierarchy and associated learning problems. Tasks are abstract
problem statements formulated independently from datasets and exist at various levels of granularity,
giving rise to a hierarchy. In contrast, a learning problem combines a specific dataset and a particular
metric to instantiate one or more tasks. Many learning problems can attempt to instantiate the same
task, and the relationships between different learning problems is the focus of external validity.

understanding). To make this distinction clear from the beginning, we define two different kinds
of problem statements. These two notions for “learning from data” distinguish between concrete
problems defined via datasets and abstract problems defined via formal or informal semantics.

2.1 Two kinds of problem statements: learning problems vs. tasks
Learning problems. A learning problem comprises a dataset of (input, output) pairs and an associated
evaluation metric for scoring proposed solutions (functions from the input to the output space). A
learning problem is fully defined by these two parts and requires no further reference to external
semantics or data; e.g., the ILSVRC-2012 dataset (ImageNet) with top-1 accuracy as metric.

Tasks. A task is a problem statement defined abstractly, either via natural language or in a formal
way. A task does not necessarily have a single true definition and we do not aim to establish any
task definitions. Tasks can exist at varying granularities, e.g., from “dog vs. cat classification” to
“animal classification” to “image classification”, which naturally gives rise to a hierarchy (see Figure
2). Tasks are omnipresent in the machine learning literature as a way to frame contributions. For the
purpose of evaluation, tasks are usually instantiated by learning problems. As an example, MNIST,
CIFAR-10, and ImageNet all instantiate the “image classification” task.

Given these definitions, a benchmark is a learning problem framed as an indicator of progress on some
task. Benchmarks usually come with a leaderboard, competition, or other context that establishes the
current state of the art. For example, improving accuracy on ImageNet can be considered as making
improvements on the image classification task in the context of the ILSVRC competition [131].

2.2 Internal and external validity in machine learning evaluations
The distinction between learning problems and tasks also separates validity issues in machine learning
into internal issues, i.e., issues arising within the context of a single learning problem, and external
issues, i.e., issues stemming from the relationship between a learning problem and broader tasks.

Internal validity. In the evaluation literature, internal validity is about consistency within the specified
context of the experimental setup [92]. In machine learning evaluations, we use internal validity
to refer to validity properties within a learning problem. If these properties are not satisfied, then
the experimental measurement itself is invalid. Examples of internal validity problems in machine
learning are comparisons to insufficient baselines or overfitting from test set re-use, both of which
invalidate claimed improvements over the state-of-the-art on a given learning problem.

External validity. External validity is about the ability to extrapolate – to make valid conclusions
for contexts outside the experimental parameters [92]. In machine learning, we use external validity
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to refer to connections between specific learning problems and the broader tasks they are meant to
represent. This goes beyond test set performance on an individual learning problem and is anchored to
expectations for performance on one learning problem to transfer to other related learning problems.
For instance, external validity issues can arise from limitations of the benchmark dataset or a mismatch
in the evaluation metrics of interest.

Internal validity criteria are well known in the field. But despite the seeming simplicity of these
failure modes, their recurrence across different areas indicates that machine learning currently has not
yet identified nor implemented mechanisms needed for rigorous evaluation. The in-depth study of
external validity criteria has only begun recently as more research datasets and concrete applications
have become available. Since many popular machine learning benchmarks do not represent real
applications but instead are constructed solely for the purpose of comparing learning algorithms,
investigating the external validity of these benchmarks is particularly important.

3 Internal validity

In this section, we provide examples of recurring internal validity issues that arise within the
benchmarking paradigm. In particular, we discuss implementation variations, errors in test set
construction, overfitting from test set reuse, and comparisons to inadequate baselines.

3.1 Implementation variations

Different implementations of the same algorithm or metric should behave as close to identical as
possible. Variations in behaviour can cause variations in performance, making comparisons difficult
if it is unclear which implementation is being referred to. This can result in situations where multiple
implementations of ostensibly the same algorithm are effectively distinct methods. We describe
specific cases of implementation variations leading to internal validity failures here, and continue
with more examples in Appendix B.1.

Algorithms. Ancillary details of an algorithm implementation, often dubbed “tricks”, can significantly
affect performance. These details are often undocumented in the paper, so subsequent implementa-
tions of the algorithm are coded differently. Consider the variation observed by [59] for algorithms
in deep reinforcement learning (deep RL): across three implementations of Trusted Region Policy
Optimization (TRPO) [134], and three implementations of Deep Deterministic Policy Gradients
(DDPG), the best codebase was several factors better than the next best. On OpenAI HalfCheetah-v1
[19], the best TRPO codebase found by [59] achieved an average reward of nearly 2,000 versus 500,
and the best DDPG implementation reached a best average reward of 4,500 versus 1,500.

Combining “tricks” employed in various implementations may produce a new, superior algorithm.
For example, a collection of different tricks was sufficient in 2018 for a four percentage point
top-1 accuracy increase on ImageNet for the ResNet-50 architecture [58], leapfrogging newer and
supposedly improved models, like SE-ResNeXt-50. One of the tweaks was first found in a particular
implementation of ResNet before adoption by subsequent papers, highlighting that these changes are
not broadly documented. Along the same lines, [11] found in 2021 that using an appropriate scaling
of the architectural dimensions and image resolution, along with a bag of tricks such as those from
[58], can actually outperform the more recent EfficientNets [147].

Metrics. Unexpected differences in metric scores caused by implementation variations hinder
proper comparisons. In machine translation, the widely-used BLEU score [111] depends on certain
parameters which are often unspecified, such as the maximum n-gram length. Further, researchers
can silently manipulate the score with changes like adding or removing tokenization, or lowercasing
text [115]. Tweaking all these levers in unison results in BLEU score variations of as much as 1.8
BLEU [115] (for context, the gap between the #1 and #2 for one MT dataset as tracked by Papers with
Code is 0.14 BLEU [110]). The use of a standardized library such as SACREBLEU [115] to ensure
reproducible parameters can help alleviate issues with metric implementations.

Libraries. Research code relies on frameworks and libraries to implement common functions. If these
libraries aren’t coded correctly, evaluation is undermined. Between the Python Image Library (PIL),
PyTorch, OpenCV, and TensorFlow, only PIL correctly downsamples a circle without introducing
aliasing artifacts [112]. Consequently, implementations of the Frechet Inception Distance (FID) [63],
which is used to evaluate generative models, would report different scores for the same models [112].
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3.2 Errors in test set construction
Even if implementations of algorithms are reliable, flaws in a test set’s construction can distort the
performance reported on a given learning problem in a few different ways.

Label Errors. Several researchers have long articulated concern for the correctness of data labels as
an indicator of internal validity [17, 105]. However, it remains unclear how much such errors impact
performance measurement, if at all, especially for deep learning [139]. A subset of label errors are
due to more conceptually consistent disagreements between annotators [27] or dataset bias [146];
these types of errors are more appropriately construed as external validity issues, and are described
further in Section 4.4.

Label Leakage. At times, data features accidentally contain direct information about the target
variable in a way that makes the learning problem redundant [70]. For instance, a bank account
number could be included as a feature to predict the individual has an open account.

Test set size. Evaluating a model on a finite-sized test set always leaves uncertainty about the actual
performance on the underlying distribution the test set is sampled from. If a test set is too small to
detect performance differences between two models, random variation in the test set scores can lead
to misinterpreting one method as superior to another [16, 22]. In Appendix B.2 we provide more
technical details about appropriate test set sizes.

Contaminated Data. Flaws in the dataset construction process may lead to unintentional inclusions
of examples that cause problems during evaluation. For example, [8] find that 10% of the images
from the CIFAR-100 [76] test set have duplicates in the training set. After deduplication, model
performance drops by as much as 14% (relative), demonstrating that the contaminated data leads
to overestimation of model performance. Similarly, cross-validation or testing on time-series must
be handled with care so as to not include future data in the training set [23]. Examples which are
not drawn from the distribution of interest can also distort apparent model performance. Machine
translation models perform worse on test sets with more translation artifacts [80]. Models perform
up to twice as well on test sets that exclude certain kinds of poor translations as they do on test sets
which don’t filter these examples out.

3.3 Overfitting from test set reuse
When evaluating a model on a test set, we are not interested in performance on the specific test
examples, but more generally in performance on similar data. Formally, we hope that the model gen-
eralizes to data from the same distribution. The connection between the test set and its corresponding
data distribution is only guaranteed if the test set is not reused frequently. This is a core assumption
in test set evaluations and is commonly recognized in lecture notes and textbooks [56, 100].

Researchers routinely undermine this assumption by repeatedly reusing popular test sets for model
selection, raising concerns about the validity of benchmark results. However, even decade-long
test set reuse has surprisingly resulted in little-to-no overfitting on popular benchmarks such as
MNIST, CIFAR-10, ImageNet, SQuAD, the Netflix Prize, and more than 100 Kaggle classification
competitions [97, 123–125, 128, 163]. While these findings are good news for the benchmark
paradigm, they also illustrate that our understanding of common evaluation practices is still limited.
An active line of research investigates the question of overfitting from test set reuse, also known as
adaptive overfitting [5, 9, 14, 37, 42, 91, 175]. Note that the cited experimental studies of overfitting
mostly focus on classification. Regression benchmarks may be more affected by test set reuse.

3.4 Comparison to inadequate baselines
Finally, reliably tracking progress on a learning problem requires comparing new methods to existing
baselines. In practice, many subtle considerations must be addressed to make proper comparisons.
We highlight the biggest recurring themes here; Appendix B.4 contains additional discussion.

3.4.1 Implementing and tuning simple methods
Researchers in machine learning often employ newer, more complex methods, such as those using
deep neural networks, to solve a given task, without leveraging simpler methods such as linear models
or random search. Attention to smaller details and thorough feature engineering can often make a
huge difference for these simple baselines:

• In graph learning, logistic regression combined with simple feature engineering provided compara-
ble performance to neural networks while being orders of magnitude faster [67, 162].
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• In recommender systems, [25, 125] found that a well-tuned vanilla matrix factorization baseline
with some feature engineering outperformed all newer methods, both neural and non-neural, on
recommendation results and collaborative filtering tasks.

• In reinforcement learning, where simple linear or RBF policies were able to solve an array of
continuous control tasks [118].

• In information retrieval, where a non-neural method from 2004 is superior to all neural approaches
developed through 2019 [164].

• In few-shot classification, where a linear layer on top of a supervised classifier’s features provides
competitive performance on meta-learning benchmarks [151].

• On tabular clinical prediction datasets, where standard logistic regression was found to be on par
with deep recurrent models [10].

• And in adversarial robustness, where early-stopping with standard projected gradient descent was
found to give performance on par with newer alternatives [127].

• On 3D reconstruction tasks, simple clustering and retrieval in the embedding space outperforms
state of the art reconstruction networks [149].

Random search is also frequently overlooked, even though it forms a strong, simple, baseline
where applicable. One particularly prominent case is in deep RL, where simple random search,
combined with a handful of minor modifications, outperforms many deep RL algorithms on a variety
of MuJoCo continuous control tasks [90]. Similarly, for hyperparameter tuning, [79] found that
random search combined with early stopping outperformed all existing approaches. And in neural
architecture search, [78, 166] found that random search with early stopping and weight sharing found
solutions comparable to leading strategies using deep learning. It should be noted that recent NeurIPS
competitions found that Bayesian optimization is superior to random search in many settings [155].

3.4.2 Controlling for algorithmic details
Implementations of algorithms often contain details to improve performance which are not described
in the text. For example, extensively tuning hyperparameters is often key to achieving optimal
performance for a proposed method. Unfortunately, baselines are often not tuned as carefully, inflating
apparent gains for the proposed method. Ignoring these consequential details leads to misattributions
of why one algorithm is better than another, affecting future research directions. For instance, a
series of recent papers have attempted to benchmark a variety of deep metric learning algorithms,
controlling for aspects such as network architecture, optimizer, image augmentations, hyperparameter
compute budget, etc. [41, 101, 129]. After controlling for these factors, the performance difference
for the best methods were marginal at best, and the papers concluded that the majority of perceived
gains could instead be attributed to newer methods using significantly better backbone architectures
(e.g., ResNet50 instead of GoogleNet) and unequal hyperparameter compute budgets. These results
very closely mirror results from a variety of other settings, such as deep semi-supervised learning
algorithms [108], graph neural networks [36, 140], domain generalization [53], and generative
adversarial networks [88]. Inconsistencies in backbone architectures and unequal tuning budgets was
a common, recurring failure mode across these papers.

We now highlight a particular example where failing to control for algorithmic details led to a
significant misattribution of a method’s performance gains. According to [39], deep policy-gradient
algorithm Proximal Policy Optimization (PPO) [135] contains several refinements, such as improved
initialization methods and reward scaling and clipping, over its predecessor, Trusted Region Policy
Optimization (TRPO) [134]. These “code-level optimizations” [39] are a modular addition, and
removing these tricks from PPO results in it performing worse than TRPO with them. The improve-
ment from adding the code-level optimizations is larger than switching the underlying algorithm,
even though PPO still outperforms TRPO when both (or neither) have the code-level optimizations.

3.4.3 Human baselines
Finally, when used for user studies, human baselines are often poorly computed. Based on the
context and expertise of the annotator, there are fundamental inconsistencies in human performance,
leading to local perceptions of performance that are far from universal. A study measuring human
performance on ImageNet using five labellers (three with more training) found errors of 8.1%, 5.3%,
4.3%, 3.8%, and 2.7% [139]. According to the authors of SQuAD 1.1 [121], a natural language
question and answering dataset, the human accuracy baseline is likely an underestimate due to using
only a single human [120]. Furthermore, assessor ability can impact human baselines — for instance,
expert translators agree more and can identify more errors on machine translation benchmarks [152].
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Figure 3: Learning problem transfer can happen to varying extents. Progress on learning problem A
may transfer to learning problem B universally (left). However, progress may also plateau (middle)
or there may be no correlation between performance on the two learning problems (right).
4 External validity
Developing tailored algorithms for specific learning problems is usually not the end goal of machine
learning research; rather, the hope is that the ideas and contributions will apply to broader scenarios.
How much one expects progress to transfer is a subjective judgment based on factors such as the
learning problems involved, the domain knowledge required, and the details of the algorithm itself.
We refer to this as external validity, as it involves relationships between two or more learning
problems. In this section, we first discuss and define two sub-types of transfer that occur within
external validity, then provide examples where evaluation issues have arisen.

4.1 Types of transfer
Algorithm transfer. The claim that a certain algorithm “generalizes well to other problems” is a claim
about algorithm transfer: the correlation between (i) the relative performance of an algorithm over
one or more baselines on one learning problem to (ii) the relative performance of the same algorithm
over a one or more baselines on another learning problem. Consider ResNets [57] when they were
introduced: adding residual connections (allowing for a deeper net) lead to better performance on
ImageNet than VGG [142], a baseline algorithm. On CIFAR-10, ResNets also outperform VGG, an
appropriate baseline choice, so we say that ResNets transfer well from ImageNet to CIFAR-10.

Learning problem transfer. Now we introduce learning problem transfer: the correlation of perfor-
mance trends over all algorithms for one learning problem with performance trends over all algorithms
for another learning problem. Whereas algorithm transfer is about the relative performance of a
specific algorithm between learning problems, learning problem transfer asks about the relative
progress of algorithms in general between learning problems. For example, as models have improved
on the ImageNet benchmark, the same models are used on the CIFAR-10 benchmark, and show
continued progress there also. If algorithms never transferred well between learning problems, then
progress on one learning problem would never transfer to another. This is visualized in Figure 3
(right), which illustrates low or no correlation between performance on two learning problems. If the
correlation weakens over time, this is the “diminishing returns” scenario shown in the middle subplot.
And if there is strong positive correlation, then the picture is similar to the first subplot.

Achieving progress in machine learning requires progress on “friendly” learning problems which
exhibit strong learning problem transfer; otherwise, researchers would have to start from scratch on
every novel learning problem. How can we predict how performance will correlate between two
learning problems? There are some common patterns in the literature that allow us to more concretely
grapple with learning problem transfer. The community has developed specific out-of-distribution
(OOD) test sets for certain problems, such as image corruptions in image classification [60], heuristics-
based counterexamples within language inference [94], and a number of "in-the-wild" distribution
shifts [6, 61, 62, 74, 124, 159]. Cast in terms of our framework, these OOD benchmarks alter the data
distribution of the learning problem, but otherwise remain very close to the original learning problem
in the task hierarchy. On the other hand, one may consider transfer of progress between learning
problems that are further apart in the task hierarchy, such as from image classification on ImageNet
to image segmentation on COCO. In general, as Figure 2 illustrates, the closer two learning problems
are in one’s conception of the task hierarchy, the greater one may expect positive transfer of progress.

Leaving a more fine-grained discussion of the various of categories of transfer to Appendix A.2, we
now explore examples from the literature pointing out failures of learning problem transfer. Since
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a learning problem is defined as a dataset plus a metric, a failure in transfer can be attributed to
either a misalignment in the datasets or a misalignment in the metrics. Such a misalignment reflects
the inconsistencies that arise when boiling down an idealized task into concrete learning problems.
Resolving these inconsistencies in either the dataset or the metric may require re-annotating the
data or collecting new data; therefore, misalignments are usually baked into the benchmark once
the dataset has been constructed and the design choices locked in. All future modeling work on the
benchmark inherits the same misalignment problems, underscoring the need for a better understanding
of the external validity of commonly used benchmarks.

4.2 Metrics misalignment
We use metric to mean any algorithm or procedure which, given a model and a dataset, returns a
number or score which is interpreted as the performance of the model on that dataset. This definition
encompasses not only mathematically defined metrics like accuracy, precision, and recall, but also
metrics parameterized by models (Frechet Inception Distance [63], BERT [111], BLEURT [137]),
and metrics which involve humans in the loop, like human evaluations of machine translation (Direct
Assessment [144], Relative Ranking [51]).

A metric which fails to adequately distinguish between two algorithms that perform differently fails
to capture what it means to do well on the learning problem. For example, a good representation
learning algorithm should cluster items of the same class together tightly and separate clusters of
different classes widely. Papers for representation learning usually report the F1, Recall@K, and
Normalized Mutual Information (NMI) metrics. However, all three metrics fail to reward algorithms
which have a greater separation between different classes [101]. Even more egregiously, NMI returns
higher scores for datasets with more classes, regardless of the algorithm’s performance [101].

Researchers may prefer to measure an idealized metric whose use is precluded by practical considera-
tions like money or time, and therefore substitute another metric instead to form a proxy learning
problem. For example, many have argued that human evaluation is the ‘gold standard’ for machine
translation [50, 69, 87], but waiting for humans to evaluate translations takes much longer and is
much more expensive than computing BLEU [111], an automatic metric. In certain cases, human
rankings of translations contradict the BLEU ordering [38, 171].

4.3 Comparisons to human performance
Comparing algorithms to humans requires more nuance than any one given learning problem provides.
Matching a human baseline on a specific learning problem does not automatically imply human-level
performance on other similar similar problems without more evidence. For one, instantiating a
task into some learning problem often strips out context which meaningfully affects evaluation. In
translation, for example, the work of human translators tends to be evaluated as a complete text,
whereas machine translation competitions compare hypothesis sentences to reference sentences,
meaning that erroneous translations which are apparent only in context are missed [152].

Further, claims to “super-human” performance on a given learning problem is related to but does not
always translate to “human-like” reasoning or ability [44] – for instance, contemporaneous models
suffer performance drops with only small changes of the learning problem that don’t affect humans
as badly (e.g. models [64] on CIFAR-10 [76]). Claimed improvements by themselves are thus only
applicable to the given learning problem, and aren’t sufficient to prove machine superiority on the
broader task or application.

4.4 Dataset misalignment
Specific decisions made about data collection and curation are increasingly acknowledged as highly
consequential to model outcomes [113, 132]. Any failure to transfer from one learning problem to
another learning problem or broader task is often tied to the data choices involved. Because of the
cost and effort involved in annotation and data collection, these decisions can have a broader impact
than failures contained to a single modeling paper. In the next two subsections, we explore how
specific choices in dataset curation can hinder an algorithm’s ability to transfer. Refer to Appendix
B.5 for additional discussion and examples.

4.4.1 Reliance on simple, inappropriate heuristics
We found several examples where gaps in the data collection process lead to models performing well
on a given learning problem by relying on data quirks which do not characterize the overall task. For
instance, [107] discovered that sub-par clinical performance of X-ray image classification models
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was in part due to an unintended correlated variable in the training data: classifiers trained to predict
whether an X-ray image presented a collapsed lung were failing disproportionately on new positive
diagnoses. It was discovered that a majority of the positive training images actually contained visible
chest drains, a treatment for the condition. Thus, models achieved a high accuracy on the learning
problem by identifying whether a chest drain was present, but completely sidestepped the original
purpose of the task. After removing the spurious feature, by filtering out chest drain images, model
performance dropped significantly, by over 20% on clinically relevant subsets of the data.

More examples of models exploiting simple dataset-level heuristics abound. The authors of [49]
found that on the Visual Question-Answering dataset [4], models could exploit strong label imbalance
on certain questions. For example, for a question beginning with “Do you see a...”, a model always
outputting “yes” – without considering the rest of the question or the actual image – can achieve an
accuracy of 87%; correcting this imbalance in the test set led to accuracy drops of up to 12% among
yes/no questions for these models. Similarly, models trained on part of a reading comprehension
task (either questions only or passages only) achieve a surprisingly high accuracy [71]. In another
case, a benchmark for equation verification (determining if an equation statement is true or false)
was revealed to include false axioms and data generation rules that biased the results towards an
overwhelming number of false statements [28].

Landmark studies found that language models regularly exploit such “spurious patterns” across a
wide range of NLP tasks [46, 72]. On the MNLI natural language inference benchmark, the presence
of a negation operator (e.g. “not”, “no”, etc.) dictates the label probability to a greater degree than
the actual input prompts [94]. Similarly, the authors of [104] find that BERT models trained on
comprehension datasets (e.g. ARCT [54]) exploit the presence of negation operators, and removing
such cues drops the model to random chance accuracy. These correlates were discovered by using
humans to augment the training data to be consistent with counterfactual labels. When evaluated on
these counterfactual subsets, model performance drops by as much as 30% in multiple cases.

4.4.2 Sensitivity to real-world distribution shift
There are also many cases where an algorithm is expected to perform in a broader variety of scenarios
than it is trained on. In such cases, the inability to transfer is not caused by exploiting specific obvious
heuristics as much as it is caused by a failure to extrapolate to different real-world data distributions.
For example, most models trained on ImageNet were found to experience a considerable drop in
accuracy when exposed to images that contained a larger amount of natural variation, such as changes
in pose, lighting, object composition, etc. [148]. Similarly, models trained for the original SQuAD
dataset performed poorly when evaluated on data collected from different source domains, such as
Amazon crowd reviews and Reddit posts [97].

In the medical domain, models developed in one institution for diagnosing pneumonia in radiographs
or classifying pathology tissue slides may not translate to other hospitals for practical reasons such as
differences in equipment and patient populations [74, 167]. Similarly, [73] find in a learning problem
transfer analysis from ImageNet to chest X-ray classification on CheXpert [68] that, while ImageNet
pre-training helps models achieve higher performance on CheXpert, models with higher ImageNet
accuracy are not likely to provide higher CheXpert performance.

4.4.3 Dataset Bias & Disagreement
At times, the misalignment perceived between the learning problems is the result of various forms of
data bias [146]. Some data sources can omit or under-represent certain sub-populations and as a result,
evaluation measurements will disguise failures for these under-represented population subgroups
[119]. For example, facial recognition benchmarks drastically under-represent darker and female
faces [96], making it difficult to perceive when models fail to perform acceptably for this subgroup
[7, 20]. Furthermore, inappropriate stereotyped associations can be perpetuated by the systematic use
of offensive, incorrect or exclusionary labels for certain mistreated subgroups [116, 145]. At times,
societal discrimination can also lead to false labels being more common in one group than another
[99]. Discrepancies between learning problem datasets may also arise from inherent contextual
differences - data sourced from differing geographies or cultural context [29, 138], in addition to
annotators with inherently differing viewpoints regarding ground truth [27, 48].

4.5 Evaluation quantification

The aforementioned examples of metric and dataset mislignment suggest that reliably measuring
progress in machine learning requires evaluating on multiple learning problems associated with a

9



Figure 4: A histogram of the number of datasets used for evaluation by each paper in our sample
pool (left), and a similar histogram for the number of metrics (right). Most of the papers (>65%)
evaluate on 3 datasets or fewer, and a similar fraction (>65%) evaluate on 2 or fewer metrics.

particular task. If a proposed method provides gains in a variety of different contexts, one can be
more confident in the performance on future learning problems instantiating the task.

To better understand community practices around benchmarking and provide some context around
our analysis and framework, we annotated a random sample of machine learning benchmarking
papers with the number of distinct datasets and the number of distinct metrics each paper used for
evaluation. Concretely, we randomly sampled 140 papers from the past five years (2016–2021)
of NeurIPS, ICML, EMNLP, and CVPR, and filtered out papers which were not applicable to the
benchmarking paradigm (37 papers). The results of our analysis for the remaining 103 papers are
presented in Figure 4. On average, papers evaluated on an average of 4.1 datasets and 2.2 metrics.
Overall, most of the papers in our sample (>65%) evaluate on 3 datasets or fewer, and a similar
fraction (>65%) evaluate on 2 metrics or fewer. Although we cannot recommend a “correct” number
of learning problems to evaluate on, as this is a domain-specific consideration based on the task and
specific learning problems, our data provides evidence that many papers evaluate on a small number
of datasets and metrics, which indicates that studying alignment between these learning problems
can be a helpful guide for future research. We provide more detail about our paper collection and
annotation procedure, as well as confidence intervals for our mean estimates, in Appendix C.

5 Broad critiques of benchmarks & competitive testing
Researchers have described several limitations to the benchmarking paradigm in machine learning.
Most obviously, the use of benchmarks to assess progress in the field creates a competitive testing
dynamic that emphasizes outcomes rather than proper scientific inquiry [66]. The absence of
community norms like reproducibility guidance [34, 114], documentation standards [98] or statistical
significance testing [16] makes relying on outcomes-based approaches to evaluate progress even more
questionable [13]. Behavior-based alternatives to the benchmarking paradigm, such as test suites
[1, 126, 170], for example, can re-orient ML evaluation away from its current focus on the competitive
determination of “state of the art”, and more towards an exploratory and descriptive probing of model
capabilities [65, 106, 143, 161, 169]. Furthermore, the learning problems we embody as benchmarks
go a long way in focusing community attention on a set of specific applications and tasks, not all
of which are ideal or value-aligned. For instance, the lack of consideration for other aspects of
performance in ML evaluation, such as model efficiency, privacy or fairness, plays a big role in
disincentivizing researchers from paying attention to such issues [40, 136].

6 Conclusion
The benchmarking paradigm has served as a valuable guide for progress in the past. However, the
next phase of machine learning innovation and deployment will require more sophisticated evaluation
practices than comparing one-dimensional performance numbers on a single test set. We hope that
our taxonomy offers a starting point for both experimental and theoretical research in this area, and
that the field will invest in a more robust understanding of the evaluation practices that inform our
shared perception of progress.
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Appendix

Our paper involves a meta-review of survey papers commenting on different evaluation failures in
machine learning across various sub-disciplines. Tables 2 and 3 provide an overview of the papers in
our survey. As is evident from the distribution of papers, internal validity issues are more commonly
discussed in machine learning. However, recently there has also been increasing interest in external
validity, particularly in natural language processing and computer vision.

We do not claim that our survey is exhaustive – it was compiled through extensively crowd-sourced
recommendations from peers, search engine queries, following citation graphs, and though our own
awareness of the field and expertise. As we read through the surveyed papers, we noted down the
main evaluation failures each paper brought up. We then came up with the failure mode organization
in a bottom-up processs, through extensive discussion about the papers, making sure that each paper
fit within the proposed taxonomy. We also paid attention to making sure that our categorization
was formally sound by covering all the cases from the initial research idea to progress on a broad
variety of real-world applications, as outline in Figure 1. The survey is meant to serve as guidance
and evidence of a broader emerging discussion in machine learning.

In Appendix A, we revisit key concepts from the paper, elaborating on our definitions of internal and
external validity as well as detailed descriptions of transfer types and categories. Appendix B extends
the discussion of individual failure modes, providing examples that we were not able to include in the
main text and recommendations for avoiding the common pitfalls in each failure mode. Appendix D
contains the aforementioned tables indexing the included survey papers. In Appendix E, we have
included a very short summary of each paper in our meta-review.

A Additional discussion of main concepts

We now provide further details for the concepts presented in the main paper, grounding our points by
formalizing certain terms. For simplicity, the concepts are stated in the context of supervised learning,
extending the concepts to other learning setups is straightforward.

A.1 Learning problems and internal validity

The core element of study in machine learning is a learning problem L, which, as mentioned in
Section 2.1, consists of a dataset S and an evaluation metric ↵, e.g., accuracy. The associated
definitions are well established in the literature. The dataset S is split into two parts: a training set
Strain and a test set Stest, with both parts containing examples (x, y) comprised of features x 2 X
and labels y 2 Y . The feature space X is often a real vector space (image pixels, demographic
information, etc.) and the label space Y is often a discrete set of classes or the real numbers.

The goal of machine learning is to find an algorithm A : (X ⇥ Y)ntrain ! (X ! Y) that maps
the ntrain = |Strain| training examples to a model f : X ! Y that generalizes beyond the training
examples. Here we use “algorithm” broadly to incorporate all aspects such as the model architecture,
optimization method, and hyperparameter choices. To evaluate the generalization capability of a
trained model f , we compute its performance ↵̂(f, Stest) on the ntest = |Stest| examples in the held-out
test set (we overload earlier notation for the evaluation metric ↵ : Y ⇥ Y ! R).

The test set is not the final goal of building the model (after all, the test set labels are already
known). Instead, the test set serves as a proxy for performance on similar future data. This idea is
usually formalized by positing that the test examples are drawn from a distribution Dtest. The test set
performance ↵̂(f, Stest) is the finite-sample approximation of the population performance ↵(f,Dtest),
which is the ultimate quantity of interest.

Internal validity. In the evaluation literature, internal validity is about consistency within the
specified context of the experimental setup [92]. In the case of machine learning, we use “internal
validity” to refer to validity properties within the context of an individual learning problem. The
core question in a benchmark evaluation on a learning problem is whether a claimed performance
improvement of a new model f compared to a prior baseline fbaseline really exists, i.e., if the compari-
son between ↵(f,Dtest) and ↵(fbaseline, Dtest) is valid. This comparison can be affected by internal
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validity problems such as implementation details (Section 3.1), insufficient baselines (Section 3.4),
overfitting from test set re-use (Section 3.3), and dataset construction issues (Section 3.2).

A.2 External validity – transfer definitions and categories

When a machine learning paper reports algorithmic improvements on a specific learning problem, the
learning problem itself is actually rarely the focus of the research effort. Instead, the paper implicitly
or explicitly claims to improve performance on a broader task. This involves a generalization of the
improvement observed on one learning problem to other contexts, other environments, and other
related tasks.

As a concrete example, most papers evaluating on ImageNet do not frame their contributions as
progress on classifying Flickr images (filtered in a special way) into one of 1,000 classes (which
include more than 100 dog breeds). Despite its importance, the ImageNet (ILSVRC-2012) learning
problem is a toy task. So instead of focusing on the specific learning problem, a paper frames its
experiments as an instantiation of a more general task such as “image classification”. The ambition of
a paper is that its algorithmic contribution applies to a wide range of problems under the umbrella of
this more general task. But what this more general task exactly is, how broadly the proposed method
applies, and how the learning problem relates to the task is rarely if ever made explicit.

The relationship between learning problems and tasks underlies most evaluations in machine learning.
Since this relationship is rarely explicitly studied, the subtle connection leads to various failures in
machine learning evaluations. In the evaluation literature, such concerns fall under the umbrella of
“external validity”, which is about the ability to extrapolate – to make valid conclusions for contexts
outside the experimental parameters (i.e., outside the specific learning problem). In this paper, we
describe the external validity issues of dataset construction (Section 4.4), metrics (Section 4.2) and
comparisons to human performance (Section 4.3). Next, we introduce a formalization and more
detailed description of the transfer concepts presented in Section 4.1 of the main text.

Table 1: Overview of Transfer Categorization

Test-time transfer Train-time transfer General transfer

Algorithm
contribution
transfer

Does a specific al-
gorithmic improve-
ment over a baseline
benchmarked on L1

hold when bench-
marked on L2?

Does a specific algo-
rithmic improvement
over a baseline bench-
marked on L1 hold
when re-trained and
benchmarked on L2?

Does a specific algorith-
mic improvement over
a baseline benchmarked
on L1 hold when
re-formatted, re-trained
and benchmarked on
L2?

Learning
problem
transfer

Do model improve-
ments benchmarked
on L1 generally
correlate with im-
proved performance
when tested on L2?

Do model improve-
ments benchmarked on
L1 generally correlate
with improved perfor-
mance when re-trained
on L2?

Do model improve-
ments benchmarked
on L1 generally cor-
relate with improved
performance when re-
formatted and re-trained
on a more conceptually
distinct L2?

A.2.1 Performance transfer

Performance transfer is the extent to which performance on one learning problem leads to performance
on another learning problem. More formally, let D1 be the test distribution of the first learning
problem (associated metric ↵1), and let D2 and ↵2 be the test distribution and performance metric
of the second learning problem. Finally, let f1 and f2 be the models produced by the same learning
algorithm when applied to the two learning problems, respectively. Then the question of transfer is
what ↵1(f1, D1) implies for ↵2(f2, D2).
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Often the absolute performance numbers on two different learning problems are not directly com-
parable. One reason is that two learning problems can have different difficulty (e.g., varying label
noise or training set sizes), which means that the same learning algorithm yields models that achieve
different performance values ↵i. Another reason can be that the two metrics ↵1 and ↵2 may quantify
different performance aspects (e.g., classification error or a regression loss). Hence understanding the
transfer between two learning problems often involves the performance improvements achieved by a
proposed algorithmic intervention.

More precisely, let I be the intervention to the learning algorithm, let f1 be the baseline model
(learned without intervention), and let f I

1 be the model learned with intervention (similarly for f2
and f I

2 ). Then �I
i = ↵i(f I

i , Di)� ↵i(fi, Di) is the improvement on learning problem i achieved by
intervention I . If the intervention I transfers from learning problem 1 to learning problem 2, �I

1 and
�I

2 should be consistent (up to scaling to accommodate different metrics ↵i).

More broadly, claims of performance for an entire task T need to transfer to all learning problems
within the scope of the claimed task. Specifically, let L1, L2, . . . be learning problem instantiating
the same task T , and let �I

i be the performance improvements achieved by intervention I on
learning problem i as before. Then intervention I improves on the entire task if and only if the �I

i

are consistent. If one of the �I
i behaves differently, either learning problem i is not actually an

instantiation of the task, or the intervention I is less effective on this learning problem, adding an
important caveat to the claimed broad improvement on the entire task.

A.2.2 Types of Performance Transfer

We distinguish two types of transfer – learning problem transfer and algorithmic transfer.

For learning problem transfer, we track how closely performance improvements on one learning
problem correlate with performance improvements on a different learning problem for all algorithms.
This indicates to us how much progress on one learning problem signifies progress on another,
and thus progress on a broader set of representations of a task. Here we expect the performance
improvement �I

i of any intervention I on a learning problem i instantiating task T to translate
to a performance improvement when T is represented by another learning problem. This means
improvements on one learning problem should correlate with improvements on all other learning
problems for the task, for all algorithmic interventions.

For algorithmic transfer, we expect a specific algorithmic intervention I to yield a performance
improvement �I

i over the baseline on any learning problem for a given task T . So if the intervention
I leads to progress on this task T , �I

i should be consistent with �I
j for any pair of learning problems

i and j instantiating the task T , given the assumption that the learning problems adequately represent
the task T .

A.2.3 Common Transfer Categories

Transfer is always between two learning problems. For both types of transfer, our expectation for
how much transfer we expect between learning problems is dependent on their similarity. In other
words, the more similar two learning problems, the more we expect performance improvement to
transfer between them, and the more we expect performance to correlate on them.

As tasks are semantically defined, it is difficult to define with certainty how similar two learning
problems are – all we can say is that similarity lies along some spectrum, where we can range from
nearly identical learning problems to learning problems with so many differences they could be
perceived as representing conceptually separate sub-tasks of task T . We attempt to demonstrate
the range of this spectrum, by introducing three familiar examples along the spectrum: Transfer
categories A, B, C - with Transfer A occurring between more similar learning problems and thus
being more expected but Transfer C, between less similar problems, being less expected. We thus
define these three common transfer categories along the spectrum of transfer expectations, tied to the
similarity of learning problems. These scenarios are described with examples, below.

Definition A.1. Transfer A: Changing the learning problem at test time.
We often deploy systems in a slightly different context from that in which they are developed. As
a result, real-world test environments often have small changes to the dataset or metrics, and thus
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we make small changes to the learning problem at test time. Regardless of these small changes, we
expect to end up with the same task, and thus a comparable performance improvement on this task.

As mentioned earlier, a learning problem L, consists of a dataset S and an evaluation metric ↵. The
difference between learning problems in Transfer A is due to updates to a test set Stest, as a change
in the distribution of features at test time (the label space Y often remains constant). Transfer A
could also involve the use of an alternative metric ↵ at test time. For example, a CNN model trained
on ImageNet[130] should have a comparable improvement over baseline performance on a test set
from ImageNetV2 [148], with the same labels but a different data distribution. In the same way, a
CNN model trained on multi-label accuracy should have a comparable improvement over baseline
performance when evaluated for performance on single label accuracy.
Definition A.2. Transfer B: Changing the learning problem at training time.
Further along the spectrum is a situation involving a less similar set of learning problems - usually
involving a change between the learning problems so notable that the model needs to be re-trained in
order for performance to be evaluated on this new learning problem.

Transfer B often involves learning problems in which the dataset S and an evaluation metric ↵ are
different - including both Stest, and Strain. This could involve updates to both features x 2 X and
labels y 2 Y . Transfer B could also involve the use of an alternative metric ↵ that requires model
re-training. For example, training a CNN model on ImageNet [130] and evaluating if algorithmic
improvements are a consistent improvement if the model is retrained to be evaluated on CIFAR-10
[64]. One could also re-train the model to compare performance on learning problems of differing
metrics.
Definition A.3. Transfer C: Changing the task.
A pair of learning problems are most different when they diverge to the point of being able to be
conceptualized as semantically distinct tasks. For example, if L1 is top-1 accuracy on ImageNet[130]
and L2 is average precision on COCO [82], then although both learning problems are different enough
to be conceived as separate tasks (i.e., “image classification” and “object detection”, respectfully),
they can also both be seen as learning problems instantiating the task T of image recognition.

Similarly, there is an expected performance transfer across a suite of Natural Language understanding
sub-tasks in GLUE [158]. Although the benchmark is composed of various sub-tasks (eg. Question-
Answering and Inference learning problems),there is an expectation for models optimized for natural
language understanding to be able to perform well on each included learning problem.

B Additional discussion & recommendations for each failure mode

In this section, we include additional examples and provide recommendations for addressing each
described failure mode in the main text.

We elaborate on the discussion on implementation variations (Section 3.1), baselines (Section 3.4),
overfitting (Section 3.3), test set contruction issues (Section 3.2), metrics misalignment (Section 4.2),
dataset misalignment (Section 4.4), and human comparisons (Section 4.3).

B.1 Implementation variations

We discuss here some additional cases of implementation variations affecting evaluation.

The line between a bug and coding something valid but not what was intended is thin. The imple-
mentation of the Adam optimization algorithm in PyTorch once incorrectly scaled a certain epsilon
factor, resulting in a minor difference in behavior [122]. More seriously, many libraries implemented
Adam with L2 regularization in lieu of weight decay - an equivalence for standard stochastic gradient
descent, but not for adaptive gradient algorithms, of which Adam is one [86].

Common libraries are used across codebases, and silent changes may affect evaluation without
widespread realization. For example, in November of 2018, maintainers of mosesdecoder, a widely-
used text tokenizer for machine translation, changed its behavior in a certain edge case. Specifically,
mosesdecoder began tokenizing the final period separately from the final word: “I laugh.” became
[“I”, “laugh”, “.”] instead of [“I”, “laugh.”] previously. This increases the number of tokens per
sentence, affecting how scores were computed by most automatic metrics [115], such as the BLEU
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score [111]. Due to this change, someone using mosesdecoder before November 2018 to evaluate a
machine translation model would compute a slightly different BLEU score than someone evaluating
the same model after November 2018. Similarly, any changes to a deep learning framework such as
TensorFlow or PyTorch affect all code using that framework.

Recommendations.

• Provide code. Authors should provide the code used to run the experiments, or at least
code which reproduces the results identically, so that implementation details can at least be
discovered by others if they turn out to be important.

• Specify baseline versions. Authors should especially take care to link to the code used to
run baselines (if from an external code base).

• Disclose hyperparameters. Authors should report all hyperparameters and experimental
settings, such as environmental parameters.

• Pin and specify dependencies. Authors should specify versions of dependencies, such as
by pinning dependencies to specific version numbers and providing this information in a
‘requirements.txt’.

• Verify implementations. Authors may wish to compare the behavior of important dependen-
cies, such as metric implementations, by comparing against multiple variations.

B.2 Dataset errors

B.2.1 Test set size

As mentioned in the main text, too small test sets can pose an internal validity issue in the bench-
marking paradigm. When a test set is too small, the measured improvement of a new method over a
baseline may be a result of sampling randomness, not a true improvement on the underlying distribu-
tion. On future data (e.g., another test set from the same distribution), the baseline may then perform
as well or even better than the new method, invalidating the claimed performance improvement.

Statistics offers a wide range of tools for estimating quantities from a finite number of samples while
taking sampling uncertainty into account. A basic and widely applicable tool are confidence intervals.
Instead of reporting only a single number (the test set performance), a confidence interval describes a
range of possible values that are compatible with the available data. As the sample size increases,
statistical uncertainty decreases and the size of the confidence interval shrinks.

In order to incorporate the confidence interval into the performance comparison (instead of only
the point estimate, e.g., average test set performance), authors should check whether the baseline
performance falls into the confidence interval of the new proposed method. If this is the case, the
test set is too small to rule out a spurious improvement that arose only from random chance, and
the authors should highlight this in the description of their experimental results. Whether a test set
is too small depends on multiple factors such as the performance improvement (effect size), the
performance metric, and the statistical significance level (or coverage of the confidence interval). A
detailed discussion of confidence intervals goes beyond the scope of this paper. We refer the reader to
[160] for a concise definition of confidence intervals and a discussion of common pitfalls. Statistical
validity in the sciences and best practices are an ongoing conversation, e.g. see [2].

B.2.2 Recommendations
• Cross-reference label annotations and assess annotator agreement. Ideally labels are

tolerably consistent across annotators.
• Verify label correctness. Confirm that labels are independently verifiable as correct by a

domain expert or informed annotator, both reviewing random samples from the dataset.
Allow for third party data audits by making dataset accessible.

• Optimize data test set size. Calculate what it means for the dataset to have a size that is
statistically significant in reporting results. Aim to have a test set size at least 5-10 % the
size of the dataset on which a model is trained.

• Check for contamination. Visually review a sub-sample from the test and train datasets
and confirm that there are no overlapping or overly similar examples included in the final
evaluation.
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B.3 Overfitting from test set re-use

Multiple papers have found that overfitting from test set re-use occurs surprisingly rarely, at least
in classification problems [97, 123, 124, 128, 163]. So at a high level, our recommendation here is
to take other validity issues at least as seriously as overfitting, even if overfitting has traditionally
received the main attention when discussing evaluation failures in machine learning [56, 100].

Beyond this high-level point, we offer two recommendations:

Recommendations.

• Continue to use validation sets for frequent model selection in addition to a test set that is
accessed more rarely. While this classical practice usually offers little advantages, it also
comes at little cost in the development workflow. As long as the principles behind test set
adaptivity are not understood better, it is safer to use separate validation and test sets.

• Pay special attention when working on regression problems. As mentioned before, the
absence of overfitting from test set re-use is currently mainly investigated for classifica-
tion problems. Anecdotal evidence suggests that overfitting may be more widespread in
regression problems, so separate validation and test sets are more important in this domain.

B.4 Comparisons to inadequate baselines

As an additional example of a comparison to inadequate baselines, small differences in training
between BERT models can vary performance substantially, by up to 7% [33]. In fact, by just
retraining BERT over multiple random seeds, [33] were able to outperform more recent methods
such as XLNET [165] or RoBERTa [84].

Recommendations.

• Simple baselines. First, it is important to benchmark against well-tuned simple, classical
methods, such as random search, linear or logistic regression, boosted decision trees, etc.
The inclusion of smaller details can often make the difference with these methods, so care
must be taken that enough thought and effort has gone into feature engineering and tuning
hyper-parameters.

• Control for variations. Second, since seemingly trivial algorithmic details may have an
outsize impact on final performance, baselines comparisons should be made on an equal
footing, where only the only source of variation is the algorithmic contribution. For example,
network backbone architectures should remain fixed when comparing different downstream
algorithms such as metric learning or generative adversarial networks (unless, of course, the
architecture is the main contribution).

• Ablate algorithmic details. Performing thorough ablation studies for the inclusion or
exclusion of each algorithmic detail should also help elucidate the finer-grained differences.

• Equal compute budgets. Additionally, compute budgets for hyper-parameter tuning and
adjustment should also be set fixed across all the methods compared to.

• Proper human evaluations. Since humans come with various backgrounds and expertise,
human evaluators should represent the desired audience for assessment, and the details of
their expertise should be explicitly reported. The conditions for the human assessment need
to be as identical as possible for each annotator, and there need to be a large enough number
of annotators such that individual variances are averaged out.

B.5 Dataset misalignment

In this section, we discuss a few additional notable examples of dataset misalignment.

In a similar vein to [107], a study on machine learning for COVID-19 detection through radiographs
found that most models exploit spurious correlates that do not hold when deployed in different
environments [30]. For example, swapping laterality markers on an image (which indicates the right
side from the left side of the patient) with those more common in COVID-19 positive images led
the model to predict an increase in odds of COVID-19 for the patient. Together, these spurious
associations degraded the model’s performance from 99.5% to to 70% in certain situations.
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A comprehensive study of CNN architectures found that transfer performance of architectures from
ImageNet to other image classification datasets varied wildly [154]; however, a similar study focusing
on transfer performance of pretrained ImageNet classifiers found a very strong correlation in accuracy
to downstream datasets [124].

Recommendations. A concrete list of recommendations is hard to provide for cases of dataset
misalignment, since the test-time distribution is very often unknown at training time.

• Evaluate on multiple learning problems. The best way to provide confidence that a given
algorithm or model adequately demonstrates the capabilities needed to solve a given task
is to evaluate the algorithm on a number of different learning problems and datasets that
are all related to a particular task. If the algorithm is shown to have consistent performance
across a number of different scenarios, then one may have greater confidence in the test-time
performance at deployment. Of course, this does not rule out the possibility that performance
may still significantly degrade due to some unexpected test-time distribution change; thus,
all results must still be evaluated with caution.

• Evaluate in context. One can set up pilot evaluations to assess model performance in a
scenario closely resembling the deployment context, to get a direct measurement of the
real-world behaviour of the model.

• Leverage domain expertise. Consult domain expertise in the design and development of the
learning problem, ensuring that the instantiated learning problem is a valid abstraction or
representation of the essential aspects of the broader task.

B.6 Metrics misalignment

Recommendations.

• On task-specific metrics. Choosing an appropriate metric is part of designing a suitable
learning problem. Metrics need to provide meaningful information about a model’s perfor-
mance. Sometimes a standard metric, like accuracy or F1, is sufficient. In other cases, a
task-specific or even learning problem-specific metric may be required.

• Validate proxy metrics. When the metric selected is a proxy for another, more meaningful
metric, the suitability of the proxy metric must be using data from the relevant distribution.

B.7 Human comparisons

Recommendations.

• Scoped claims. “Superhuman” performance can only really be claimed with respect to a
specific learning problem. Obtaining human-level performance on one learning problem
does not necessarily translate to the model having human-level ability on the broader task.

• Consistent evaluation settings. The evaluation context for human assessment of the model
should be consistent with the context in which humans typically assess human performance
on the same task.

C Details on paper survey

We provide further detail about our methodology for the paper survey mentioned in Section 4.5. We
randomly sampled 140 papers from the past five years (2016–2021, where available) of NeurIPS,
ICML, EMNLP, and CVPR; after filtering out papers that did not fit into the benchmarking paradigm
(e.g. purely theory papers, some forms of analysis papers, those without experiments, etc.), we were
left with 103 papers that formed the basis for our analysis. For each of these 103 papers, we noted
down the number of distinct metrics and the number of distinct datasets used for evaluation, excluding
any one-off toy synthetic datasets such as random gaussians or extremely simple gridworlds.

The results of our analysis are presented in Figure 4. Note that one paper evaluated on 57 Atari
datasets; we omitted this datapoint during plotting Figure 4 (left) but included it the following analysis.
On average, papers evaluate on around four datasets; the mean of our sample is at 4.10, and the 95%
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percentile bootstrap confidence interval for the mean from 10,000 resamples is (3.04, 5.47). Papers
tended to evaluate on fewer metrics, with the average being around two metrics; the mean of our
sample is at 2.21, and the 95% percentile bootstrap confidence interval for the mean from 10,000
resamples is (1.93, 2.51). Overall, most of the papers in our sample (>65%) evaluate on 3 datasets or
fewer, and a similar fraction (>65%) evaluate on 2 metrics or fewer.

D Survey summary table

Table 2: Summary of Analyzed Papers – Internal Validity Issues

Failure Modes Implementation Baselines Data
(Internal)

Adaptive
Overfitting

Natural Language
Processing

[103, 172] [33, 95,
115, 133]

[17, 22, 80,
93, 171,
174]

[127]

Computer vision [112] [32, 149,
151]

[105] [123, 124]

Generative models N/A [88] N/A N/A

Optimization [86] [79] N/A N/A

Meta-learning N/A [78, 166] C N/A

Metric learning N/A [41, 101,
129]

N/A N/A

Learning on graphs N/A [36, 67,
140, 162]

N/A N/A

Tabular data N/A [10, 43] N/A [56, 100]

Reinforcement Learning [39, 168] [3, 59, 90,
118]

N/A N/A

Information Retrieval N/A [164] N/A N/A

Recommender Systems N/A [25, 125] N/A N/A

Semi-supervised / Unsu-
pervised

N/A [108] N/A N/A

General / Other [16] [53, 141] [28, 113,
132]

[14, 128]

28



Table 3: Summary of Analyzed Papers - External Validity Issues

Failure Modes Metrics Data
(External)

Human
Performance

Critiques

Natural Language
Processing

[15, 21, 38,
40, 45, 51, 52,
109, 126]

[17, 46, 47,
71, 72, 83, 94,
97, 104]

[85, 152] [40, 126]

Computer vision [12] [30, 73, 75,
107, 117, 148,
154, 167]

[139] N/A

Generative models [173] N/A N/A N/A

Optimization N/A N/A N/A N/A

Meta-learning N/A N/A N/A N/A

Metric learning N/A N/A N/A N/A

Learning on graphs N/A N/A N/A N/A

Tabular data N/A N/A N/A N/A

Reinforcement
Learning

N/A [3] N/A N/A

Information
Retrieval

N/A N/A N/A N/A

Recommender
Systems

N/A N/A N/A N/A

Semi-supervised /
Unsupervised

N/A N/A N/A N/A

General / Other N/A [26, 28, 49,
113, 150, 156]

[44] [13]
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E List of analysis papers and short summaries

Legend of Failure Modes

I Implementation Variations
B Baseline Issues

DI Data, Internal validity issues (ie. methodological errors, etc.)
O Adaptive Overfitting

DE Data, External validity issues (ie. spurious correlations, data misalignment, etc.)
M Metrics misalignmennt
H Comparison to Human Performance
G General critiques of benchmarking

E.1 NLP (Translation, Question answering, Natural language Inference)
DE Can Small and Synthetic Benchmarks Drive Modeling Innovation? A Retrospective Study of

Question Answering Modeling Approaches [83] Explores whether synthetic benchmarks
could have driven architectural modeling progress in natural language (instead of SQuAD)
and finds agreement between the two types of benchmarks in multiple cases.

H Putting human assessments of machine translation systems in order [85]. Authors identify
the unawknowledged design decisions that bias the assessment of human annotators that use
the relative ranking method to evaluate model performance on 25 translation tasks from the
annual Workshop on Machine Translation (WMT) in 2010 and 2011. In particular, the order
in which candidate translations are presented is shown to bias human judgement and thus
evaluation outcomes.

H Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine
Translation [152] A prior claim that a Chinese to English machine translation system
achieved human parity falls through when translationese is removed from the picture.
Further, expert annotators, in this case, professional translators, are better able to tell
between machine and human translations.

I Do Transformer Modifications Transfer Across Implementations and Applications? [103]
The authors find that most proposed modifications to the transformer architecture do not
significantly improve performance across a variety of benchmarks. They suggest this is
because modifications are specific to implementations and applications, and fail to transfer
beyond their original niche.

DE, O The Effect of Natural Distribution Shift on Question Answering Models [97]
Explores a variety of naturally occuring distribution shifts for language models, such
as collecting data from various online source domains, and finds these changes in the
distribution can have a large impact on model performance. The authors also find no signs
of overfitting from test set re-use on the popular SQuAD benchmark.

DE,DI What Will it Take to Fix Benchmarking in Natural Language Understanding? [17]. Survey
paper with natural language processing that asserts learning problems should be well
constructed, have adequate statistical power, and be representative of the task they aim to
solve.

M Translationese in Machine Translation Evaluation [52]. The authors show that using
“reverse”-direction sentences, which were translated from language A to language B but
used for a B-to-A dataset, inflate human evaluation scores. They also examine prior claims
of model-human parity and find evaluation problems such as not using a large enough test
set; a re-evaluation suggests that the machine system was outperformed by humans.

DI The Effect of Translationese in Machine Translation Test Sets [171]. The inclusion of
translationese, a translation artifact, in machine translation test sets inflates human evaluation
scores for machine translation systems, and in some cases changes rankings of models.

DI BERTs of a feather do not generalize together: Large variability in generalization across
models with similar test set performance [93]. Training the same NLP model architecture
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(BERT) over a hundred different random seeds obtains consistent performance on MNLI, a
natural language inference (NLI) dataset, but widely varying generalization performance, as
measured on HANS, an NLI dataset that tests for biases learned on MNLI.

DE Probing Neural Network Comprehension of Natural Language Arguments [104]. Finds that
language models trained to solve a reasoning comprehension task exploit statistical cues
within the dataset to achieve high performance.

M Re-evaluating the role of bleu in machine translation research [21]. The authors highlight
two situations where the use of BLEU fails to distinguish between translations which a
human could tell apart and would rate differently. They find low correlation between BLEU
scores and human judgements of adequacy and fluency.

B A call for clarity in reporting bleu scores [115]. The most commonly used automatic metric
(as opposed to human evaluation) in machine translation, BLEU, is not reported consistently:
some papers preprocess text before scoring, and there are many parameters used by BLEU
that aren’t reported. The paper proposes a standarized tool for BLEU to solve these problems.

M BLEU might be Guilty but References are not Innocent [45]. The authors show that
improving reference translations improves correlation of BLEU with human judgement.

DI With Little Power Comes Great Responsibility [22]. This paper describes the influence of
statistical power in NLP experimental design and how small dataset size in GLUE make it
difficult to distinguish between statistical noise and meaningful model improvements.

M, G Beyond Accuracy: Behavioral Testing of NLP models with CheckList [126]. The authors
propose an alternative evaluation paradigm to benchmarks, instead focusing on specific tests
for known or anticipated failure modes for broadly relevant linguistic capabilities.

DE Learning the Difference that Makes a Difference with Counterfactually-Augmented Data
[72]. Crowdsourced perturbations of two NLP datasets cause model performance to drop,
while learning on the regular and perturbed data improves on both domains and generaliza-
tion to new domains. The two datasets are IMDB, a sentiment classification dataset [89],
and SNLI [18], a natural language inference dataset.

B Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early
Stopping [33]. Finds that small factors such as random seed variance can have a huge impact
on BERT performance, which is up to 7% on downstream tasks in the case of random seed
variance.

M On The Evaluation of Machine Translation Systems Trained With Back-Translation [38].
The authors show that BLEU fails to capture human preferences for models trained with
back-translation.

DE Evaluating NLP Models via Contrast Sets [46]. Benchmarks fail to address how NLP models
perform in specific cases. The authors propose “contrast sets”, where experts manually
perturb test data points in a semantically meaningful way, to identify whether models are
still able to output the correct answer. SOTA models perform worse on these contrast sets.

DI The Curse of Performance Instability in Analysis Datasets: Consequences, Source, and
Suggestions [174]. Analysis datasets are similar to standard benchmarks but specifically
designed to test a linguistic capability or known failure mode. The authors find that model
performance on benchmarks between random seeds is stable, but performance on analysis
dataset can vary widely.

B On the State of the Art of Evaluation in Neural Language Models [95]. The authors
compare Recurrent Highway Networks (RHNs) against Long Short-Term Memory networks
(LSTMs). They find that prior work demonstrating RHN superiority over LSTMs allocated
more compute to RHNs, and find similar or competitive performance for LSTMs once this
is controlled for.

DE Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Infer-
ence [94]. The Multi-genre Natural Language Inference dataset (MNLI) contains several
examples of syntactic heuristics, where the answer can be predicted by following a simple
rule, such as always predicting "contradiction" when the premise contains "not". The authors
construct a new dataset HANS which contains examples that both satisfy and violate the
heuristics, and show that SOTA models perform extremely badly (e.g. 100% to 0% accuracy)
on the portion of HANS which violates the heuristics the models have learned from MNLI.
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I Revisiting Few-sample BERT Fine-tuning [172]. Many previous papers have proposed
solutions for stable BERT finetuning. The authors find that instability is caued by a bug
in the ADAM implementation, and that fixing this bug reduces the advantage of propose
finetuning methods.

B It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners [133].
By reformulating SuperGLUE tasks into cloze-style questions, small language models can
be can also be fine-tuned to have performace better than GPT-3.

DE Robustness Gym: Unifying the NLP Evaluation Landscape [47]. Presents software developer
tools that cover a range of different NLP metrics, datasets, etc. in order to help practicioners
evaluate their models in various conditions.

G, M Utility is in the Eye of the User: A Critique of NLP Leaderboards [40]. Authors highlight
that leaderboards fail to measure (i.e., don’t come with metrics for) factors beyond model
performance, such as model size or inference speed or environmental impact.

DE How Much Reading Does Reading Comprehension Require? A Critical Investigation of
Popular Benchmarks [71]. Reading comprehension benchmarks require models to pick
the answer to a question given a passage. Models do well on reading comprehension
benchmarks even when the passage or question is withheld, suggesting that the datasets are
poorly constructed because knowledge of the passage or question is irrelevant.

E.2 Computer vision (Image classification, object detection, Medical,General-purpose
benchmarks, 3D shape reconstruction)

DE AI for radiographic COVID-19 detection selects shortcuts over signal [30]. Finds that
models trained for COVID-19 detection through radiographs exploit spurious correlates that
do not hold when deployed in different environments.

DE Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for
Medical Imaging [107]. Finds that models trained for detecting a pneumothorax from chest
x-rays latch onto obvious dataset-level heuristics such as the presence of a chest drain instead
of adequately solving the task.

H Evaluating Machine Accuracy on ImageNet [139]. Humans are trained through documenta-
tion guidance and practice to classify objects in ImageNet and achieve comparable accuracy
to modern machine learning models, though experience significantly less of a performance
drop than models due to distribution shift. These labelers are about 3% to 9% better than
the human performance levels reported from early 2015, indicating the variability of human
baselines. Top-1 accuracy (a more natural task for humans) is almost perfectly linearly
correlated with multi-label accuracy for the evaluated models, but humans fail more often
for fine-grained categories (eg. differentiating dog breeds) while models fail more evenly
across label categories.

B Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? [151].
Finds that the simple baseline of training a linear model on top of a supervised classifier
in the context of meta-learning tasks can outperform a variety of previous meta-learning
appraoches such as MAML.

M Are we done with ImageNet?[12]
The authors collect multi-label annotations for ImageNet via a modified crowdsourcing
process. The results show a slightly plateauing trend, indicating that models may have
overfit to specifics of the ImageNet distribution.

DE Measuring Robustness to Natural Distribution Shifts in Image Classification [148]. Finds
that models trained on ImageNet fail to generalize well to other distributions with shifts in
object pose, lighting, object composition, etc.

DE In a forward direction: Analyzing distribution shifts in machine translation test sets over
time [80]. A fixed machine translation model scores better on newer machine translation
test sets than older test sets (the Workshop on Machine Translation releases a new test set
every year). The observed increase in scores for any single model is attributable to changes
made in dataset construction which progressively removed translationese, a problematic
translation artifact.
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DE Transfusion: Understanding Transfer Learning for Medical Imaging [117]. This study
looks at 2 medical image datasets: diabetic retinopathy prediction and chest x-ray prediction.
They compare a few deep learning models and find that imagenet pretraining doesn’t really
help performance on these downstream datasets.

DE CheXtransfer: Performance and Parameter Efficiency of ImageNet Models for Chest X-Ray
Interpretation [73]
The paper compares ImageNet performance of several CNN architectures to performance
on X-ray classification. The authors find that X-ray classification performance has plateaued
as a function of ImageNet performance, but ImageNet pre-training still helps on the X-ray
dataset.

DE Do Better ImageNet Models Transfer Better? [75]
The authors evaluate ImageNet models on twelve other image classification datasets and
find that better ImageNet models also perform better on the other datasetes, especially when
the models are pre-trained on ImageNet.

DE Is it Enough to Optimize CNN Architectures on ImageNet? [154]. The authors train 500
ImageNet architectures on 8 other image classification datasets from different domains and
find that the correlation between ImageNet performance and dowstream dataset performance
varies wildly, with even negative correlations for some.

DE Variable generalization performance of a deep learning model to detect pneumonia in
chest radiographs: A cross-sectional study [167]. Finds that models trained to diagnose
pneumonia in chest radiographs in one hospital fail to generalize well to other hospital due
to differences in data collection, equipment, patient populations, etc.

O Does ImageNet Generalize to ImageNet? [124]
The authors construct a new test set for ImageNet and find that overfitting from test set re-use
did not occur despite a decade of competitive testing on this dataset. Instead, distribution
shift led to a substantial drop in accuracy.

O Does CIFAR-10 Generalize to CIFAR-10? [123]
The authors construct a new test set for CIFAR-10 and find that overfitting from test set re-
use did not occur despite a decade of competitive testing on this dataset. Instead, distribution
shift led to a substantial drop in accuracy.

O Cold Case: The Lost MNIST Digits [163]
The authors construct a new test set for MNIST and find that overfitting from test set re-use
did not occur despite two decades of competitive testing on this dataset.

B A Baseline for Few-shot Image Classification [32]. Finds that a simple transductively-tuned
baseline can outperform all more complex methods (MAML, MetaOpt, etc.) on few-shot
learning tasks when controlling for all other factors of variation.

B What Do Single-view 3D Reconstruction Networks Learn? [149]. Finds that simple baselines
such as clustering and retrieval on top of the pretrained embedding space outperform recent
deep methods for 3D reconstruction.

I On Buggy Resizing Libraries and Surprising Subtleties in FID Calculation [112]. The
widely used Frechet Inception Distance (FID) metric for evaluating generative models is
not consistently reported. Differences between image processing libraries and choices in
implementing FID cause meaningful differences in scores.

DE From ImageNet to Image Classification: Contextualizing Progress on Benchmarks [153].
The authors provide multi-label annotations for ImageNet via a modified crowdsourcing
process and study the impact of images with multiple labels on ImageNet accuracy metrics.

B Overfitting in adversarially robust deep learning [127]. The paper shows that early stopping
combined with a simple loss function is competitive with more complicated loss functions
that were proposed for adversarially robust image classification.

DI Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks [105].
Authors revealed significant label errors in mainstream datasets, such as an average error
rate of 3.4% across the reviewed 10 datasets, including 6% of the ImageNet validation set.
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E.3 Meta-learning / Architecture search
B Random search and reproducibility for neural architecture search [78]. Given the same com-

putational budget, random search with minor modifications (e.g. early stopping) outperforms
state of the art neural architecture search methods.

B Evaluating the Search Phase of Neural Architecture Search [166]. Finds that random search
within the penn treebank and cifar10 dataset search spaces leads to similar performance as
leading neural architecture search algorithms when given equal compute.

E.4 Generative models (GANs, generative language models)
M HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models [173].

This paper introduces a human benchmark for evaluation of generative models, which scores
if a human can tell a real image vs fake. The authors found that HYPE scores were not
correlated with commonly used automated metrics such as FID.

B Are GANs Created Equal? A Large-Scale Study [88]. Evaluates many GAN losses, fixing
the backbone architecture, dataset, and other training details, and finds that most GAN
models can reach similar performance given equal compute budget.

E.5 Optimization for deep learning
B Hyperband: a novel bandit-based approach to hyperparameter optimization [79]. Finds

that random search combined with early stopping outperforms more sophisticated Bayesian
hyper-parameter optimization methods.

I Decoupled Weight Decay Regularization [86]. The authors point out that L2 regularization
is distinct from weight decay regularization for adaptive gradient algorithms like Adam,
even though the former is often substituted for the latter. They show that implementing
weight decay regularization improves Adam’s generalization performance.

B A Large Batch Optimizer Reality Check: Traditional, Generic Optimizers Suffice Across
Batch Sizes [102]. LARS and LAMB optimizers are designed to increase the speed of
model training given large batch sizes. Traditional optimizers like Nesterov momentum and
Adam perform comparably at large batch sizes, signifying that such interventions are not
significant improvements when compared to an adequate baseline.

E.6 Learning on graphs
B Combining Label Propagation and Simple Models Out-performs Graph Neural Networks

[67]. Finds that incorporating a graph label propagation step with simple models outperforms
more recent deep graph neural networks.

B Benchmarking Graph Neural Networks [36]. This paper documents common pitfalls and
problems in benchmarking graph neural networks.

B Simplifying Graph Convolutional Networks [162]. Finds that a simple graph preprocessing
step with an adjacency matrix combined with logistic regression outperforms more recent
deep graph neural networks.

B Pitfalls of Graph Neural Network Evaluation [140]. Graph neural network papers (GNN) fail
to control for relevant factors when making comparisons. The authors of this paper attempt
to evaluate four GNN architectures while controlling for everything except architectures:
keeping the optimizers, initialization methods, compute budget, etc, the same. Performance
turns out to be similar between different GNNs.

E.7 Tabular data & classical methods (ie. Medical (MIMIC))
B Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? [43]

When evaluating the performance of 179 classifiers on the whole UCI repository (121 data
sets) [35], authors found that random forest classifiers outperformed any other type, with
these methods achieving over 90% accuracy in 84.3% of the data sets.

B Evaluating Progress on Machine Learning for Longitudinal Electronic Healthcare Data
[10]. Finds that on tabular data prediction tasks found on MIMIC-III, simple logistic
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regression achieves comparable performance to more sophisticated methods developed over
the past three years.

E.8 Reinforcement Learning

DE, B What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study [3].
Implements many RL algorithms and more than 50 code-level tricks and optimizations to
consistently benchmark performance; one surprising finding is that policy initialization
scheme plays a huge role in policy performance.

I Implementation Matters in Deep Policy Gradients: A Case Study on PPO and TRPO [39].
The authors compare two deep policy gradient algorithms, Proximal Policy Optimization
(PPO) and Trusted Region Policy Optimization (TRPO). They find that “code level optimiza-
tions”, algorithmic modification described as auxillary details or undescribed altogether,
are responsible for most of PPO’s performance gain over TRPO and significantly affect
algorithmic behaviour.

B Deep reinforcement learning that matters [59]. Evaluation of reinforcement learning
(RL) algorithms suffers from several issues: varying the random seed varies algorithm
performance enough to change performance rankings; many under-reported hyperparameters
greatly affect algorithm performance; different implementations of the same algorithm
perform differently.

B Simple random search provides a competitive approach to reinforcement learning [90]. A
lightweight modification of random search achieves similar reward as SOTA reinforcement
learning methods on MuJoCo Gym tasks while requiring fewer samples.

B Towards Generalization and Simplicity in Continuous Control [118]. Simple methods
using policies with linear and RBF parameterizations can solve many continuous control
benchmarks, including MuJoCo Gym tasks. Further, the authors highlight that policies
learned on the benchmarks are trajectory-centric: when these policies are perturbed, they
fail to recover.

E.9 Visual question answering

DE Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question
Answering [49]. Finds that original VQA dataset is not balanced in terms of label distribution
for certain questions, making achieving high performance relatively easy.

DE, T On the Value of Out-of-Distribution Testing: An Example of Goodhart’s Law [150]. Critiques
the use of VQA-CP as a valid OOD dataset for VQA tasks, since VQA-CP inverts the VQA
label distribution, and many robust methods explicitly rely on this fact.

E.10 Information retrieval

B Critically Examining the “Neural Hype”: Weak Baselines and the Additivity of Effectiveness
Gains from Neural Ranking Models [164]. Examines many information-retrieval papers
from 2005-2019, and find that no approach (both neural or non-neural) comes close to the
2004 best.

E.11 Metric Learning

B A Metric Learning Reality Check [101]. Authors benchmark several deep metric learning
algorithms on three datasets under identical training conditions and find that papers have
drastically overstated improvements over classic methods.

B Unbiased Evaluation of Deep Metric Learning Algorithms [41]. Authors benchmark several
deep metric learning algorithms on three datasets under identical training conditions and
find that older methods perform significantly better than previously believed.

B Revisiting Training Strategies and Generalization Performance in Deep Metric Learning
[129]. Authors benchmark several deep metric learning algorithms on three datasets under
identical training conditions and find that generally, performance between criteria is much
more similar than literature indicates.
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E.12 Recommender Systems
B A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research

[25]. This is a recommender systems reproducibility experiment, where they compare the
proposed methods to a range of baselines on the datasets the original papers used; 11 of the
12 methods were outperformed by simple baselines on the datasets the respective paper had
identified.

B On the Difficulty of Evaluating Baselines: A Study on Recommender Systems[125]. This
is a recommender systems reproducibility experiment on the MovieLens-10M benchmark;
finds that a well-tuned vanilla matrix factorization baseline significantly outperforms more
recent methods reported in the literature.

E.13 Semi-supervised /Unsupervised representation learning
B Realistic Evaluation of Deep Semi-Supervised Learning Algorithms [108]. This work is a

standardized evaluation of semi-supervised learning algorithms on SVHN and CIFAR-10;
they find that prior work underestimated the performance of fully supervised learning in the
small-n regime and that ImageNet pre-training + fine-tuning with few samples does better
than any of the semi-supervised methods they benchmarked.

E.14 General / other
DE Machine Learning that Matters [156]. A scientist hoping to use machine learning for

practical applications gets frustrated with the inadequate quality of the UCI repository [35]
and the benchmark culture it perpetuates. She advocates instead for a more systems-level
perspective on machine learning development and evaluation.

H Performance vs. competence in human–machine comparisons [44]. There is a difference
between possessing human-level ability (“competence”), and the superficial demonstration
of a skill (“performance”). Many models perform better than human counterparts on a given
learning problem but do not achieve this performance in a human-like way, and thus fail to
demonstrate competence when tested for that skill outside the scope of the initial learning
problem.

DE,DI A Flawed Dataset for Symbolic Equation Verification [28]. A synthetic dataset for equation
verification is heavily critiqued for the lack of rigor in how it is generated, the correctness of
the axioms presented and the relevance of the task represented.

DI “Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes
AI [132]. Authors interview 53 ML practitioners in 6 countries and conclude that data work
remains under-valued as a research topic of interest, even though data labelling consists of
25-60% of the cost of model development. They identify that data issues compound on each
other in “data cascades”, contributing to critical failures in model deployment within high
stakes scenarios.

M Accounting for variance in machine learning benchmarks [16]. Several sources of variation
in the dataset and implementation of machine learning models can obscure our understanding
of their performance (eg. data sampling, data augmentation, parameter initialization, and
hyperparameters choices). This paper recommends randomization and more robust trial
reporting in order to appropriately and consistently address these issues.

G Pitfalls in Machine Learning Research: Reexamining the Development Cycle [13]. This
paper comments on the challenges throughout the model development lifecycle that con-
tributes to failures in machine learning deployment. Algorithmic design, data collection,
and evaluation practices are named as concrete areas of concern - authors recommend
interventions such as third party assessment, statistical testing and data audits.

B Can You Trust Your Model’s Uncertainty? [141] This survey of uncertainty estimation
methods shows that ensemble methods consistently outperform the rest.

O The Ladder: A Reliable Leaderboard for Machine Learning Competitions [14]
The paper introduces a specific attack on competition leaderboards demonstrating that
overfitting from test set re-use is easily possible. The paper also describes a mechanism to
protect from overfitting.
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O A Meta-Analysis of Overfitting in Machine Learning [128]
The authors survey more than 100 classification competitions on Kaggle and find little to no
overfitting from test set re-use.

DE Underspecification Presents Challenges for Credibility in Modern Machine Learning [26].
Machine learning models that are identically trained and developed fail in different ways
once deployed - this is partially due to the “underspecification” of the learning problem, in
which features of the problem in the training domain are unaccounted for with respect to
their influence on performance in the deployment domain.

DE,B In the wild: From ml models to pragmatic ml systems [157] Implicit assumptions in the
experimental setup of few-shot and continual learning tasks obscure a clear understanding
of performance measurement. The FLUID framework re-introduces certain experimental
design considerations that need to be explicitly designed for real world model deployment.

DE,DI Data and it’s (dis)contents [113]. The culture around dataset development, use, and distribu-
tion demonstrates a lack of cautious attention paid to this critical aspect of broader machine
learning development.
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